NAME (print): \qquad
Math 203 Spring 2013-Exam 4
Instructor: J. Shapiro

Work carefully and neatly and remember that I cannot grade what I cannot read. You must show all relevant work in the appropriate space. You may receive no credit for a correct answer if there is insufficient supporting work. Notes, books and programable calculators are NOT ALLOWED.
[15pt] 1. Fill in the blanks with A (lays), S (ometimes), N (ever) so that the following are correct statements.
(a) If A is an $n \times n$ matrix and u is a nonzero vector in \mathbb{R}^{n}, such that $A u=5 u$, then 5 is \qquad an eigenvalue of A.
(b) If 5 is an eigenvalue of A and if B is similar to A, then 5 is \qquad A an eigenvalue of B.
(c) If A is a 3×3 matrix and 3 and 5 are the only eigenvalues of A, then A is \qquad 5 diagonalizable.
(d) If $\operatorname{char}(A)=(5-x)^{2}(3-x)$, and the dimension of the eigenspace of 5 is one, then A is \qquad diagonalizable.
(e) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation. Let A be the matrix of T with respect to the standard matrix and suppose that B is a matrix that is similar to A. Then B \qquad represents the matrix of T with respect to some basis of \mathbb{R}^{n}.
[15] 2. Find the characteristic polynomial, eigenvalues and a basis for each corresponding eigenspace

$$
\begin{aligned}
& \text { Find the characteristic polynomial, eigenvalues and a basis for each corresponding eigenspace } \\
& \text { for the matrix below: } \\
& \left.\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \quad \operatorname{det}\left(\begin{array}{cc}
1-\lambda & -1 \\
-1 & 1-\lambda
\end{array}\right)=(1-\lambda)^{2}-1=\lambda^{2}-2 \lambda+1-1 \\
& E \cdot V \quad \lambda=0, \lambda=2 \\
& A-0 I=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \sim\left(\begin{array}{c}
1-1 \\
0 \\
\lambda^{2}-2 \lambda
\end{array}\right)=\lambda(\lambda-2) \\
& A-\binom{1}{1} \text { fa } \lambda=0 \\
& A-\left(\begin{array}{cc}
-1 & -1 \\
-1 & -1
\end{array}\right) \sim\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right) \quad\binom{1}{-1} \text { fo } \lambda=2
\end{aligned}
$$

[12] 3. Let $P=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$, (so $P^{-1}=\left(\begin{array}{rr}-1 & 2 \\ 1 & -1\end{array}\right)$) and let $D=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$. If $A=P D P^{-1}$, compute A^{4}.

$$
\left.\begin{array}{rl}
A^{4}=P D^{4} P^{-1} & =\left(\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
16 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right) \\
16 & 2 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 2 \\
1 & -1
\end{array}\right)=\left(\begin{array}{ll}
-14 & 30 \\
-15 & 31
\end{array}\right), ~ l
$$

[20] 4. Let $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 3 & -2 \\ 0 & 4 & -3\end{array}\right]$ (then A is diagonalizable).
(a) Find the eigenvalues of A and then find a diagonal matrix similar to A.

$$
\begin{aligned}
& \text { Chan }(A)=\operatorname{det}(A-\lambda I) \\
& \begin{aligned}
\lambda=1,-1 & (1-\lambda) \operatorname{det}\left(\begin{array}{cc}
3-\lambda & -2 \\
4 & -3-\lambda
\end{array}\right) \\
& =(1-\lambda)(3-\lambda)(-3-\lambda)-(-2)(4) \\
& =(1-\lambda)\left(\lambda^{2}-9 \lambda+8\right) \\
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) & =(1-\lambda)\left(\lambda^{2}-1\right)
\end{aligned}
\end{aligned}
$$

(b) Find an invertible matrix P such that $A=P D P^{-1}$, where D is the matrix you

$$
\begin{aligned}
& \text { found in part (a). Find eigenvectors } \\
& A-I I=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 2 & -2 \\
0 & 4 & -4
\end{array}\right) \sim\left(\begin{array}{ccc}
0 & 1 & -1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \text { Two free variables } \\
& \left.A+2 I=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 4 & -2 \\
0 & 4 & -2
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 / 2 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
1 / 2 \\
1
\end{array}\right)\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 / 2 \\
0 & 1 & 1
\end{array}\right)\right]
\end{aligned}
$$

[10] 5. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{3}$ be defined by $T(p)=(2 p(1), p(-1), p(3))$. Then T is a linear transformation (you do not have to prove this). Find the matrix of T relative to the bases $\left\{t^{2}, t, 1\right\}$ (note the order) and the standard basis of \mathbb{R}^{3}.

$$
\begin{aligned}
& T\left(t^{2}\right)=(2,1,9) \\
& T(t)=(2,-1,3) \\
& T(1)=(2,1,1) \\
& A=\left(\begin{array}{ccc}
2 & 2 & 2 \\
1 & -1 & 1 \\
9 & 3 & 1
\end{array}\right)
\end{aligned}
$$

[10] 6. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation given by $T\binom{x}{y}=\binom{5 x+y}{2 x+4 y}$. Let

$$
\begin{aligned}
& \begin{array}{c}
\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-2}\right\}(\text { so } \mathcal{B} \text { is a mas } \\
\mathcal{C}\binom{1}{1}=\binom{6}{6}=G\binom{1}{1}
\end{array} \\
& T\binom{1}{-2}=\binom{3}{-6}=3\binom{1}{-2} \\
& { }^{\text {So }}[T]_{B}=\left(\begin{array}{ll}
6 & 0 \\
0 & 3
\end{array}\right)
\end{aligned}
$$

[10] 7. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation, such that the matrix of T with respect to the $\mathcal{B}=\left\{b_{1}, b_{2}, b_{3}\right\}$ basis is
$A=\left(\begin{array}{rrr}4 & -2 & 3 \\ 1 & 5 & 0 \\ 0 & -1 & 3\end{array}\right)$. What is $\left[T\left(b_{1}+2 b_{2}-b_{3}\right)\right]_{\mathcal{B}}$?

$$
\left(\begin{array}{ccc}
4 & -2 & 3 \\
1 & 5 & 0 \\
0 & -1 & 3
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
-1
\end{array}\right)=\left(\begin{array}{c}
4-1-3 \\
1+1 \\
-2
\end{array}\right)=\binom{-3}{-1}
$$

[8]
8. Let $u=\left(\begin{array}{r}2 \\ -5 \\ -1\end{array}\right)$ and $w=\left(\begin{array}{r}-7 \\ -4 \\ 6\end{array}\right)$. Compute $u \cdot w$ and $\|u\|^{2}$.

$$
\begin{aligned}
& u \cdot w=-14+20-6=0 \\
& \|u\|^{2}=4+25+1=30
\end{aligned}
$$

